
Go to the first, previous, next, last section, table of contents.

Control Statements in Actions
Control statements such as if, while, and so on control the flow of execution in awk programs. Most
of the control statements in awk are patterned on similar statements in C.
All the control statements start with special keywords such as if and while, to distinguish them from
simple expressions.
Many control statements contain other statements; for example, the if statement contains another
statement which may or may not be executed. The contained statement is called the body. If you want to
include more than one statement in the body, group them into a single compound statement with curly
braces, separating them with newlines or semicolons.
� If Statement: Conditionally execute some awk statements.
� While Statement: Loop until some condition is satisfied.
� Do Statement: Do specified action while looping until some condition is satisfied.
� For Statement: Another looping statement, that provides initialization and increment clauses.
� Break Statement: Immediately exit the innermost enclosing loop.
� Continue Statement: Skip to the end of the innermost enclosing loop.
� Next Statement: Stop processing the current input record.
� Nextfile Statement: Stop processing the current file.
� Exit Statement: Stop execution of awk.

The if-else Statement
The if-else statement is awk's decision-making statement. It looks like this:
if (condition) then-body [else else-body]

The condition is an expression that controls what the rest of the statement will do. If condition is true,
then-body is executed; otherwise, else-body is executed. The else part of the statement is optional. The
condition is considered false if its value is zero or the null string, and true otherwise.
Here is an example:
if (x % 2 == 0)
 print "x is even"
else
 print "x is odd"

In this example, if the expression `x % 2 == 0' is true (that is, the value of x is evenly divisible by
two), then the first print statement is executed, otherwise the second print statement is executed.
If the else appears on the same line as then-body, and then-body is not a compound statement (i.e. not
surrounded by curly braces), then a semicolon must separate then-body from else. To illustrate this, let's
rewrite the previous example:

Page 1 of 8AWK Language Programming - Control Statements in Actions

12/17/2011http://www.math.utah.edu/docs/info/gawk_10.html

if (x % 2 == 0) print "x is even"; else
 print "x is odd"

If you forget the `;', awk won't be able to interpret the statement, and you will get a syntax error.
We would not actually write this example this way, because a human reader might fail to see the else if
it were not the first thing on its line.

The while Statement
In programming, a loop means a part of a program that can be executed two or more times in
succession.
The while statement is the simplest looping statement in awk. It repeatedly executes a statement as long
as a condition is true. It looks like this:
while (condition)

body

Here body is a statement that we call the body of the loop, and condition is an expression that controls
how long the loop keeps running.
The first thing the while statement does is test condition. If condition is true, it executes the statement
body. After body has been executed, condition is tested again, and if it is still true, body is executed
again. This process repeats until condition is no longer true. If condition is initially false, the body of the
loop is never executed, and awk continues with the statement following the loop.
This example prints the first three fields of each record, one per line.
awk '{ i = 1
 while (i <= 3) {
 print $i
 i++
 }
}' inventory-shipped

Here the body of the loop is a compound statement enclosed in braces, containing two statements.
The loop works like this: first, the value of i is set to one. Then, the while tests whether i is less than or
equal to three. This is true when i equals one, so the i-th field is printed. Then the `i++' increments the
value of i and the loop repeats. The loop terminates when i reaches four.
As you can see, a newline is not required between the condition and the body; but using one makes the
program clearer unless the body is a compound statement or is very simple. The newline after the open-
brace that begins the compound statement is not required either, but the program would be harder to read
without it.

The do-while Statement
The do loop is a variation of the while looping statement. The do loop executes the body once, and then

Page 2 of 8AWK Language Programming - Control Statements in Actions

12/17/2011http://www.math.utah.edu/docs/info/gawk_10.html

repeats body as long as condition is true. It looks like this:
do

body
while (condition)

Even if condition is false at the start, body is executed at least once (and only once, unless executing
body makes condition true). Contrast this with the corresponding while statement:
while (condition)

body

This statement does not execute body even once if condition is false to begin with.
Here is an example of a do statement:
awk '{ i = 1
 do {
 print $0
 i++
 } while (i <= 10)
}'

This program prints each input record ten times. It isn't a very realistic example, since in this case an
ordinary while would do just as well. But this reflects actual experience; there is only occasionally a
real use for a do statement.

The for Statement
The for statement makes it more convenient to count iterations of a loop. The general form of the for
statement looks like this:
for (initialization; condition; increment)

body

The initialization, condition and increment parts are arbitrary awk expressions, and body stands for any
awk statement.
The for statement starts by executing initialization. Then, as long as condition is true, it repeatedly
executes body and then increment. Typically initialization sets a variable to either zero or one, increment
adds one to it, and condition compares it against the desired number of iterations.
Here is an example of a for statement:
awk '{ for (i = 1; i <= 3; i++)
 print $i
}' inventory-shipped

This prints the first three fields of each input record, one field per line.
You cannot set more than one variable in the initialization part unless you use a multiple assignment
statement such as `x = y = 0', which is possible only if all the initial values are equal. (But you can

Page 3 of 8AWK Language Programming - Control Statements in Actions

12/17/2011http://www.math.utah.edu/docs/info/gawk_10.html

initialize additional variables by writing their assignments as separate statements preceding the for
loop.)
The same is true of the increment part; to increment additional variables, you must write separate
statements at the end of the loop. The C compound expression, using C's comma operator, would be
useful in this context, but it is not supported in awk.
Most often, increment is an increment expression, as in the example above. But this is not required; it
can be any expression whatever. For example, this statement prints all the powers of two between one
and 100:
for (i = 1; i <= 100; i *= 2)
 print i

Any of the three expressions in the parentheses following the for may be omitted if there is nothing to
be done there. Thus, `for (; x > 0;)' is equivalent to `while (x > 0)'. If the condition is omitted,
it is treated as true, effectively yielding an infinite loop (i.e. a loop that will never terminate).
In most cases, a for loop is an abbreviation for a while loop, as shown here:
initialization
while (condition) {

body
increment

}

The only exception is when the continue statement (see section The continue Statement) is used
inside the loop; changing a for statement to a while statement in this way can change the effect of the
continue statement inside the loop.
There is an alternate version of the for loop, for iterating over all the indices of an array:
for (i in array)

do something with array[i]

See section Scanning All Elements of an Array, for more information on this version of the for loop.
The awk language has a for statement in addition to a while statement because often a for loop is both
less work to type and more natural to think of. Counting the number of iterations is very common in
loops. It can be easier to think of this counting as part of looping rather than as something to do inside
the loop.
The next section has more complicated examples of for loops.

The break Statement
The break statement jumps out of the innermost for, while, or do loop that encloses it. The following
example finds the smallest divisor of any integer, and also identifies prime numbers:
awk '# find smallest divisor of num
 { num = $1

Page 4 of 8AWK Language Programming - Control Statements in Actions

12/17/2011http://www.math.utah.edu/docs/info/gawk_10.html

 for (div = 2; div*div <= num; div++)
 if (num % div == 0)
 break
 if (num % div == 0)
 printf "Smallest divisor of %d is %d\n", num, div
 else
 printf "%d is prime\n", num
 }'

When the remainder is zero in the first if statement, awk immediately breaks out of the containing for
loop. This means that awk proceeds immediately to the statement following the loop and continues
processing. (This is very different from the exit statement which stops the entire awk program. See
section The exit Statement.)
Here is another program equivalent to the previous one. It illustrates how the condition of a for or
while could just as well be replaced with a break inside an if:
awk '# find smallest divisor of num
 { num = $1
 for (div = 2; ; div++) {
 if (num % div == 0) {
 printf "Smallest divisor of %d is %d\n", num, div
 break
 }
 if (div*div > num) {
 printf "%d is prime\n", num
 break
 }
 }
}'

As described above, the break statement has no meaning when used outside the body of a loop.
However, although it was never documented, historical implementations of awk have treated the break
statement outside of a loop as if it were a next statement (see section The next Statement). Recent
versions of Unix awk no longer allow this usage. gawk will support this use of break only if `--
traditional' has been specified on the command line (see section Command Line Options).
Otherwise, it will be treated as an error, since the POSIX standard specifies that break should only be
used inside the body of a loop (d.c.).

The continue Statement
The continue statement, like break, is used only inside for, while, and do loops. It skips over the rest
of the loop body, causing the next cycle around the loop to begin immediately. Contrast this with break,
which jumps out of the loop altogether.
The continue statement in a for loop directs awk to skip the rest of the body of the loop, and resume
execution with the increment-expression of the for statement. The following program illustrates this
fact:
awk 'BEGIN {
 for (x = 0; x <= 20; x++) {
 if (x == 5)
 continue

Page 5 of 8AWK Language Programming - Control Statements in Actions

12/17/2011http://www.math.utah.edu/docs/info/gawk_10.html

 printf "%d ", x
 }
 print ""
}'

This program prints all the numbers from zero to 20, except for five, for which the printf is skipped.
Since the increment `x++' is not skipped, x does not remain stuck at five. Contrast the for loop above
with this while loop:
awk 'BEGIN {
 x = 0
 while (x <= 20) {
 if (x == 5)
 continue
 printf "%d ", x
 x++
 }
 print ""
}'

This program loops forever once x gets to five.
As described above, the continue statement has no meaning when used outside the body of a loop.
However, although it was never documented, historical implementations of awk have treated the
continue statement outside of a loop as if it were a next statement (see section The next Statement).
Recent versions of Unix awk no longer allow this usage. gawk will support this use of continue only if
`--traditional' has been specified on the command line (see section Command Line Options).
Otherwise, it will be treated as an error, since the POSIX standard specifies that continue should only
be used inside the body of a loop (d.c.).

The next Statement
The next statement forces awk to immediately stop processing the current record and go on to the next
record. This means that no further rules are executed for the current record. The rest of the current rule's
action is not executed either.
Contrast this with the effect of the getline function (see section Explicit Input with getline). That too
causes awk to read the next record immediately, but it does not alter the flow of control in any way. So
the rest of the current action executes with a new input record.
At the highest level, awk program execution is a loop that reads an input record and then tests each rule's
pattern against it. If you think of this loop as a for statement whose body contains the rules, then the
next statement is analogous to a continue statement: it skips to the end of the body of this implicit
loop, and executes the increment (which reads another record).
For example, if your awk program works only on records with four fields, and you don't want it to fail
when given bad input, you might use this rule near the beginning of the program:
NF != 4 {
 err = sprintf("%s:%d: skipped: NF != 4\n", FILENAME, FNR)
 print err > "/dev/stderr"
 next

Page 6 of 8AWK Language Programming - Control Statements in Actions

12/17/2011http://www.math.utah.edu/docs/info/gawk_10.html

}

so that the following rules will not see the bad record. The error message is redirected to the standard
error output stream, as error messages should be. See section Special File Names in gawk.
According to the POSIX standard, the behavior is undefined if the next statement is used in a BEGIN or
END rule. gawk will treat it as a syntax error. Although POSIX permits it, some other awk
implementations don't allow the next statement inside function bodies (see section User-defined
Functions). Just as any other next statement, a next inside a function body reads the next record and
starts processing it with the first rule in the program.
If the next statement causes the end of the input to be reached, then the code in any END rules will be
executed. See section The BEGIN and END Special Patterns.

The nextfile Statement
gawk provides the nextfile statement, which is similar to the next statement. However, instead of
abandoning processing of the current record, the nextfile statement instructs gawk to stop processing
the current data file.
Upon execution of the nextfile statement, FILENAME is updated to the name of the next data file listed
on the command line, FNR is reset to one, ARGIND is incremented, and processing starts over with the
first rule in the progam. See section Built-in Variables.
If the nextfile statement causes the end of the input to be reached, then the code in any END rules will
be executed. See section The BEGIN and END Special Patterns.
The nextfile statement is a gawk extension; it is not (currently) available in any other awk
implementation. See section Implementing nextfile as a Function, for a user-defined function you can
use to simulate the nextfile statement.
The nextfile statement would be useful if you have many data files to process, and you expect that you
would not want to process every record in every file. Normally, in order to move on to the next data file,
you would have to continue scanning the unwanted records. The nextfile statement accomplishes this
much more efficiently.
Caution: Versions of gawk prior to 3.0 used two words (`next file') for the nextfile statement.
This was changed in 3.0 to one word, since the treatment of `file' was inconsistent. When it appeared
after next, it was a keyword. Otherwise, it was a regular identifier. The old usage is still accepted.
However, gawk will generate a warning message, and support for next file will eventually be
discontinued in a future version of gawk.

The exit Statement
The exit statement causes awk to immediately stop executing the current rule and to stop processing
input; any remaining input is ignored. It looks like this:
exit [return code]

Page 7 of 8AWK Language Programming - Control Statements in Actions

12/17/2011http://www.math.utah.edu/docs/info/gawk_10.html

If an exit statement is executed from a BEGIN rule the program stops processing everything
immediately. No input records are read. However, if an END rule is present, it is executed (see section
The BEGIN and END Special Patterns).
If exit is used as part of an END rule, it causes the program to stop immediately.
An exit statement that is not part of a BEGIN or END rule stops the execution of any further automatic
rules for the current record, skips reading any remaining input records, and executes the END rule if there
is one.
If you do not want the END rule to do its job in this case, you can set a variable to non-zero before the
exit statement, and check that variable in the END rule. See section Assertions, for an example that does
this.
If an argument is supplied to exit, its value is used as the exit status code for the awk process. If no
argument is supplied, exit returns status zero (success). In the case where an argument is supplied to a
first exit statement, and then exit is called a second time with no argument, the previously supplied
exit value is used (d.c.).
For example, let's say you've discovered an error condition you really don't know how to handle.
Conventionally, programs report this by exiting with a non-zero status. Your awk program can do this
using an exit statement with a non-zero argument. Here is an example:
BEGIN {
 if (("date" | getline date_now) < 0) {
 print "Can't get system date" > "/dev/stderr"
 exit 1
 }
 print "current date is", date_now
 close("date")
}

Go to the first, previous, next, last section, table of contents.

Page 8 of 8AWK Language Programming - Control Statements in Actions

12/17/2011http://www.math.utah.edu/docs/info/gawk_10.html

